Adapted connections on metric contact manifolds
نویسندگان
چکیده
منابع مشابه
Distinguished Connections on (j2 = ±1)-metric Manifolds
We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of (J2 = ±1)-metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among con...
متن کاملOn Contact Metric R-Harmonic Manifolds
In this paper we consider contact metric R-harmonic manifolds M with ξ belonging to (κ, μ)-nullity distribution. In this context we have κ ≤ 1. If κ < 1, then M is either locally isometric to the product E × S(4), or locally isometric to E(2) (the group of the rigid motions of the Euclidean 2-space). If κ = 1, then M is an Einstein-Sasakian manifold. Mathematics Subject Classification: 53C05, 5...
متن کاملSymmetries of Contact Metric Manifolds
We study the Lie algebra of infinitesimal isometries on compact Sasakian and K–contact manifolds. On a Sasakian manifold which is not a space form or 3– Sasakian, every Killing vector field is an infinitesimal automorphism of the Sasakian structure. For a manifold with K–contact structure, we prove that there exists a Killing vector field of constant length which is not an infinitesimal automor...
متن کاملGeometric connections and geometric Dirac operators on contact manifolds
We construct some natural metric connections on metric contact manifolds compatible with the contact structure and characterized by the Dirac operators they determine. In the case of CR manifolds these are invariants of a fixed pseudo-hermitian structure, and one of them coincides with the Tanaka–Webster connection. 2005 Elsevier B.V. All rights reserved. MSC: 53B05; 53C15; 53D10; 53D15
متن کاملRicci solitons in contact metric manifolds
In N(k)-contact metric manifolds and/or (k, μ)-manifolds, gradient Ricci solitons, compact Ricci solitons and Ricci solitons with V pointwise collinear with the structure vector field ξ are studied. Mathematics Subject Classification: 53C15, 53C25, 53A30.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2012
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2012.06.010